Nuclear partition functions

(Last update: 01/01/2009)

$G(Z,A) = \frac{1}{2J_0+1} \sum_\mu (2J_\mu +1) \exp(-E_\mu/kT)$

$G(Z,A) \approx \frac{1}{2J_0+1} \int \sum_J (2J +1) \rho(E,J)\exp(-E/kT) dE$

where $J_o$ is the ground state spin

The partition functions are calculated using experimental excited spectrum whenever available (RIPL-3 database) and if not, on the basis of the nuclear level densities obtained within the HFB plus combinatorial method (Goriely et al., 2008, Phys. Rev. C78, 064307)

 Z=11Z=21Z=31Z=41Z=51Z=61Z=71Z=81Z=91Z=101
 Z=12Z=22Z=32Z=42Z=52Z=62Z=72Z=82Z=92Z=102
 Z=13Z=23Z=33Z=43Z=53Z=63Z=73Z=83Z=93Z=103
 Z=14Z=24Z=34Z=44Z=54Z=64Z=74Z=84Z=94Z=104
 Z=15Z=25Z=35Z=45Z=55Z=65Z=75Z=85Z=95Z=105
 Z=16Z=26Z=36Z=46Z=56Z=66Z=76Z=86Z=96Z=106
 Z=17Z=27Z=37Z=47Z=57Z=67Z=77Z=87Z=97Z=107
Z=8Z=18Z=28Z=38Z=48Z=58Z=68Z=78Z=88Z=98Z=108
Z=9Z=19Z=29Z=39Z=49Z=59Z=69Z=79Z=89Z=99Z=109
Z=10Z=20Z=30Z=40Z=50Z=60Z=70Z=80Z=90Z=100Z=110


a zipped tar file including all partition functions can be downloaded here (0.8Mb).Small text